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1 Introduction

The necessity to transform the Austrian transport and energy sector towards less carbon
emissions is well understood. Energy efficient technologies to support this transformation
are equally well known (APCC 2014, UBA 2015, WBGU 2011). Eventually, in some decades,
market forces and pressure from limited resources alone will lead to a replacement of
conventional, fossil-fuel based technologies by their innovative, low carbon substitutes.
However, relying just on slow self-regulatory market turnover will incur substantial social
and ecological costs (Stern 2006, Steininger et al. 2014). Time is of the essence in setting out
for transformative pathways, as each year of delay further depletes the carbon budget
available to remain within the guardrails of +1.5°C or +2°C global warming, and restricts the
room for maneuver in the coming years. This calls for an in-depth understanding of the
dynamics in the market uptake of low carbon technologies, in particular its discontinuities
and acceleration/deceleration phases, in order to identify potential avenues for targeted

policy intervention.

Rogers” (1989) diffusion of innovations theory is the backbone of numerous technology
forecast studies. This theory characterizes market uptake as a s-shaped diffusion curve with
initial slow onset, followed by a longer phase of fast diffusion and eventual levelling off as
soon as the market becomes saturated (van der Kam et al. 2018, Gnaan et al. 2018). Various
modelling approaches root in the widely established s-shape (e.g. Bass model (Adner 2002,
Bass 1969); Fisher-Pry model (Gnann et al. 2018)). Rogers’ s-shaped pattern includes two
turning points at which the diffusion dynamic changes direction: the take-off point, when a
niche product enters the market mainstream, and the saturation point, when the growth rate

fades out as full market penetration draws near.

However, it is empirically evident that technology diffusion happens in a socio-political
context and that real-world diffusion processes do not strictly adhere to the idealized s-

shape. Sood and Tellis (2005) identify for several technologies multiple consecutive s-shapes,



suggesting refreshing and pause phases. They also find linear instead of exponential growth
during the take-off phase. Technology diffusion is influenced by a variety of factors such as
investment costs, operating costs, attributes and characteristics, popularity, policy measures,
social aspects, infrastructure, etc. (Lee et al. 2012, van der Kam et al 2018, Simpson and
Clifton 2016, Changgui et al. 2018). Policies and protocols initiated by governments and
international organizations are a major influence. A prominent example is the UK Climate
Change Act 2008, which underpinned the market diffusion of low carbon innovations in
order to meet the ambitious emission targets (Carter and Jacobs 2013). Thus, linking the
observed market diffusion of low carbon technologies with political, technological and
societal interventions requires to explicitly identify when turning points occur that boost or
hinder the diffusion of innovations and how the shape of the diffusion curve changes after

these turning points.

Therefore the aim of the paper is to demonstrate a methodology for identifying change
points in market diffusion in order to pinpoint when the empirically observed market
diffusion of low carbon technologies deviates from Rogers’ baseline s-shape pattern and to
show how the pace of technology diffusion changes. The empirical framework presented
here enables to identify critical moments during the diffusion process — such as triggers that

spark rapid market take-off, or time fuses that set off gradual but accelerating growth.

For the case of Austria four low-carbon technologies are analyzed in the timespan from 1970
to 2018 using the mathematical technique of change point analysis: (1) privately owned
electric vehicles (EV), (2) privately owned hybrid electric vehicles (HEV), (3) photovoltaics
panels (PV), and (4) heat pumps for space heating (HP). All four technologies are large-
purchase technologies with mature products available on the private consumer market, but
they differ in their current levels of market penetration and in the length of their investment
cycles. Following Rogers’ classification, EV are in the innovator stage, HEV and PV are in the
early adoption, and HP are in the early majority stage of diffusion in Austria. Consequently,
our discussion of the Austrian low carbon market development addresses the early stages of
market take-off long before consolidation to a satiated, stabilized market share. While our
results only reflect the context of Austria as a typical western industrialized country, we
expect that our proposed methodology may be replicated in other countries in order to

enable cross-country comparisons.

1.1  Rogers’ diffusion of innovations theory

By means of case studies Roger (1983) found that the adoption of an innovation over time
follows a bell shaped normal distribution and consequently the cumulative number of units
adopted shows an s-shaped curve of diffusion. During slow initial development mainly

innovators and early adopters are attracted, followed by a rapid upscaling, where the early



and later majority adopts the technology and finally a plateau is reached, describing market
satiation as laggards eventually adopt the technology. Figure 1 illustrates Rogers (1983)
theory and assigns the low carbon technologies analyzed in this study to the respective

stages of market diffusion.
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Figure 1: Roger’'s S-shaped curve describing the diffusion of innovations (edited, source: Rogers 2012)

Within energy and climate research a vast number of models for forecasting innovative,
emerging technologies build on Rogers’ s-shaped diffusion theory. A famous example is the
Bass diffusion model (Bass 1969), which is the most commonly used model to predict
technology adoption. It is frequently applied to the cases of PV and e-car use (Dong et al.
2016, Kurdgelashvili et al. 2019, van der Kam et al. 2018, Guidolin et al. 2010). Other
examples of s-shaped diffusion models are the Fisher-Pry model (Fisher & Pry, 1971),
applied in the areas of digital innovation (Michalakelis et al. 2018, Oughton et al. 2018),
renewable energy scenarios (Devezas et al. 2008) as well as low carbon mobility (Bjorn et al.
2011) and logistic models in general (Bewley & Fiebig, 1988) used for forecasting diffusion of
renewable electricity (Lee and Huh 2017, Xu et al. 2016) as well as energy generation (Harris
et al. 2018).

The s-shaped diffusion curve provides the null hypothesis of this study, reflecting the
theoretically assumed baseline model of technology diffusion. The idealized s-shape consists
of three phases of technology diffusion: slow onset, rapid growth, saturation. A range of
alternative diffusion models are tested that represent these three phases as sequences of
exponential, linear and logistic functions, with the aim of providing a more realistic and

accurate picture of real-world market dynamics.

2 Data

This study uses time series data on technology performance over the last three to five

decades, drawing on national vehicle statistics and annual market reports of technology
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development (Table 1). Data on the motor vehicle stock compiles information of the monthly
released registration of new and used vehicles in Austria and documents the stock of e-cars
and hybrid electric cars for the time-span of 1990 to 2018. The annual report on innovative
energy technologies in Austria (Biermayer et al. 2019) shows the market development of
installed PV capacities and number of heat pumps and aggregates annual reports of industry
associations, annual accounts of major firms, market research and surveys among
distributors, retailers as well as operators. As of now, the timeline of technology performance
published in the annual report on innovative energy technologies provides the best market
coverage on PV and heat pump evolution in Austria and is widely accepted in the Austrian

technical and scientific community.

Table 1: Description of data

Technology Indicator Timespan Source

Electric cars Number of privately owned | 1990-2018 Statistics Austria, Stock of motor
e-cars vehicles

Hybrid electric Number of privately owned | 1990-2018 Statistics Austria, Stock of motor

cars hybrid electric cars vehicles

Photovoltaics Installed PV capacity in kWp | 1990-2018 BMVIT (Biermayr et al. 2019,

Innovative Energy Technologies in
Austria - Market Development

2019
Heat Pumps Number of heat pumps for 1970-2018 BMVIT (Biermayr et al. 2019),
space heating ° Innovative Energy Technologies in
Austria - Market Development
2019

# excluding all heat pumps that are only used for water heating.

3 Method

A stepwise methodological approach is adopted to compare the observed market diffusion
of low carbon technologies to Rogers” s-shape pattern; first to show when (change points),
second to show how (parametric functions) the observed diffusion curve deviates from the

baseline s-shape.

Step 1: Baseline model

The s-shaped diffusion curve is the baseline model and null hypothesis of our analysis.
Mathematically speaking, the s- curve corresponds to a logistic function. As at the starting

year of our time series data a small number of units had already been adopted, the observed




technology diffusion curve does not originate at zero; therefore an intercept term D is added
to the logistic function.

C

F(tla,b,C.D) = T )

Eq.1

F describes the technology diffusion in year t. Four parameters are to be estimated: b denotes
the logistic growth rate and controls the slope of the curve, i.e. the pace of technology
diffusion. The term —% is the midpoint of the logistic curve, i.e. the point in time when the
annual growth rate levels off. C denotes the maximal, satiated value of the logistic function,

while D is the minimal, starting value of the curve.

Step 2: Alternative change point models

The mathematical technique of change point analysis fits alternative models to the observed
technology diffusion data. Three alternative models (discrete CP, smooth CP, two CP) with

one or two change points are tested against the baseline logistic-model.

e Smooth CP: Model with one or two change points, where after each change point a
new parametric function may follow and with the condition that the whole function
is smooth.

e Discrete CP: Model with one or two change points, where after each change point a
new parametric function may follow. In contrast to above, this specification allows
for discrete functions in order to cater to fluctuations and volatility in real-world
market environments.

e Two CP: Model with two change points, with the same parametric function applied
before the first change point and after the second change point, and another
parametric function between the two change points. This specific model allows to
detect pull-forward effects, a special case of market dynamics. One prominent
example is the German accelerated vehicle retirement program, which led to a sharp
increase in demand for new cars as long as the policy was active, but shortly after the
policy was discontinued, the car registration numbers returned to the pre-policy
trend (Bockers et al. 2012).

Due to the number of parameters to be estimated and the short timespan of available data,
we restrict the number of change points to maximal two. Otherwise, overfitting would be an

issue.

Each alternative change point model consists of a set of parametric functions before and after
each change point. These functions can be understood as building blocks, which are pieced
together to approximate the course of market diffusion over time. For instance the logistic S-
curve initially behaves similar to an exponential function and turns approximately linear in
the intermediate stage of rapid diffusion. Due to the fact that the analyzed technologies are

in the early stages of market uptake, the following three building blocks are used:
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(i) Loglstlc: loglt(tla, b,C,D) = m +D E&].Z

(ii) Exponential: exp(tla,b,D) = e*?* + D Eq.3
(iii)  Linear: lin(t|a,b) = a + bt Eq4

The parameterization of the logistic function (i) is identical to the baseline model in Eq.1. In
the exponential function (ii) D denotes the intercept starting level of the curve, while b
describes the exponential growth rate. Note that in case of small values of t, the growth rate
corresponds to logistic growth. The term a, more precisely e® is a multiplicative factor. If we
approximate the logistic function (with parameters a;, b;, C;, D; ) near a point t,, we would
estimate the parameters as follows b = b;, D = D; and a = log(C;e®) — log(l + e@thi to). In
the linear function (iii) b is a linear growth factor and a denotes the intercept. If we

approximate the logistic function (with parameters a,, b, C;, D; ) near a point t, with a linear

e—(ar+b;to)

function then we would estimate the parameters as follows b = b; * (;—————~ and
1+e-(artbito)
) — -
a= 1+e-(ar+bito) +D —to*b.

Step 3: Parameter estimation for each alternative model variation

Every possible combination of number of change points and building blocks in the
alternative models is estimated. The advantage of this additive approach is that we are able
to detect the point in time when the shape of the diffusion curve changes as well as to
identify how the curve changes in terms of dynamic and pace (e.g. exponential or linear
acceleration in diffusion). The drawback however is the large number of variations of
functions to be estimated. For each alternative model 33 functional variations are possible
from all permutations of three building blocks and one or two change points: 3% variations of
one change point models plus 3% variations of two change point models. Consequently,

model selection is crucial.

Step 4: Model selection

The model selection relies on the corrected Akaike Information Criterion (AICc) (Akaike
1973) which is a second order correction for the approximation of the Kullback-Leibler
distance between the distribution of the data and the estimated model (Snipes and Taylor
2014). The AICc is preferable to the standard AIC if the number of observations is small.
AlCc is a powerful method for comparing models and frequently used in model selection
(Andrews and Currim 2003, Ingdal et al. 2019, Wagenmakers and Farrel 2004, Jakubczy
2019). Note that the AICc scores are ordinal and dimensionless; they are simply a tool for

model ranking (Snipes and Taylor 2014).

Additionally, the AICc is used to derive posterior model weights in a Bayesian setting with
special prior distribution (Eq.A1l in the appendix gives the details). Basically the probability

weights are formulated as difference between the AICc of a particular model and the AICc of
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the model with the minimal AICc. These weights then show the probability that one model
fits better than the other models. Thus, the weights can be interpreted similar to p-values in
classical hypothesis testing. These probabilities are helpful in case of small differences

between AICc scores.

Due to the large number of 33 variations in each alternative model a stepwise selection
process is adopted: First, within each alternative model (i.e., smooth CP, discrete CP, two
CP) the AICc for all 33 functional variations is compared and the variation with the lowest
AlICc is selected. Next, this best fitting functional variation within each alternative model is
compared to the AICc of the baseline model. If the baseline model has a higher AICc, the null
hypothesis is rejected and the alternative model variation with the lowest AICc is selected as
it describes the observed data best. This model then provides the change point(s) when and
how the model shape changes. If the baseline model has the lowest AICc, the null hypothesis

is retained as the observed data adhere to the idealized s-shape.
4 Results

41 Comparison of baseline versus alternative models

The null hypothesis of this study states that technology diffusion follows an s-shaped logistic
function (baseline model), as posited by diffusion of innovations theory. Table 2 reports the
AICc and the Bayesian weights for the baseline and the best fitting alternative models. Figure
2 compares the observed market diffusion with the best fitting variation of alternative
models and the s-shape baseline. None of the four investigated technologies evolves

logistically as presumed by theory and hence the null hypothesis is rejected throughout.

Table 2: Comparison of models: AlCc and bayesian probability weights (w) for the baseline and best
fitting variation of alternative models for all technologies

EV HEV PV HP
AlCc w AICc w AlCc w AICc w
Baseline 384 0% 453 0% 686 0% 893 0%
Discrete CP | 353 0% 383 33% 545 97% 739 100%
Smooth CP 354 0% 394 0% 552 3% 754 0%
Two CP 322 100% | 382 67% 604 0% 778 0%

According to the AICc values, for EV and HEV the two CP model and for PV and HP the
discrete CP model shows the best fit. In contrast to theory, the empirically observed diffusion
does not follow a smooth function. Among all alternative models in all technologies, the

smooth CP model performs worst.

In HEV the AICc values differ only marginally between the discrete CP and the two CP

alternative model. The Bayesian probability weights however suggest to select the two CP



model: with a probability of 67% the two CP model is more likely to outdo the discrete CP
model with a probability of 33%. For all other technologies the differences in AICc are more

pronounced, resulting in probabilities of 97% or more for the best model.

Although two change points and a discrete functional form are detected in all technologies,
market diffusion unfolds quite differently over time. Taking a closer look at our results
reveals that the location of as well the timespan between change points vary and that the
building blocks of functions as well as their specific parameters differ strongly between the

technologies.
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Figure 2: Comparison of estimated models with empirical observations: Black circles illustrate observed market diffusion. Dotted and solid lines show the diffusion of the best
fitting alternative model (discrete CP, smooth CP, two CP) and of the s-shape Baseline.



4.2  Change points and shapes of technology diffusion

The technique of change point analysis offers the double advantage of identifying (1) change
points when the diffusion dynamic changes and (2) functions how the shape of the diffusion
curve, implying pace and dynamic, changes. Comparing the alternative models between the
technologies reveals some contrasting and striking differences. Figure 3 illustrates the
functions of each building block of the selected best-fit model for each technology in order to
emphasize the sharp transitions in pace from one building block to the next. It also illustrates
how observed market diffusion fluctuates and does not follow a smooth trajectory. The year
of the change point and the ensuring reorientation in the shape of the curve informs on the
occurrence of accelerate and brake effects. Table A1l summarizes the main attributes of the
selected models (functional form of building blocks, parameterization and year of change
points) for each technology. Going back in history from the change points and their
characteristics provides the starting point for searching various events in the past which may

have lead up to these change points.

For a long period of time EV were hardly visible in the total vehicle stock. They started to
take hold in the vehicle market in 2011, when market performance changed to a phase of
rapid growth (modelled as an exponential function). This stark growth phase was quite short
and lasted until 2015, when the pace of growth decreased and returned to the logistic
function of the first building block. The period between 2011 and 2015 seems to represent a
pull forward effect, where the market development deviates only for a limited period from
the underlying trend (as illustrated in Figure 3 the logistic function of the first and third
building block). Still, post-2015 the number of vehicles continues to grow fast, but seems to

level off.

Previous studies on EV diffusion, in particular referring to the Austrian context (Biermayr et
al 2019; Yu et al. 2018) suggest crucial developments in technological and policy-related
factors as explanations for the 2011-2015 growth period. After the introduction of the Tesla
Roadster in Austria in 2009, the range of battery EV increased dramatically. Austrian policy
makers made great efforts from 2007 onwards to boost adoption (e.g. purchase subsidies in
all federal states, implementation of e-mobility test regions, support of charging
infrastructure). In parallel, EU legislation limiting emissions of new passenger cars was
passed in 2009 (Regulation (EC) No 443/2009). The continuing, but less rapid growth since
2015 is likely to be linked to ongoing efforts of the Austrian government to support EV
purchase and operation. For instance, from 2016 onwards EV are exempt from sales tax and

car registration tax.
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HEV appeared on the market in the early 1990s but remained on an indiscernible level for a
long period of time. The year 2006 marks the first change point, when modest logistic growth
changed to rapid exponential growth. In the following decade HEV diffusion was
characterized by exponentially increasing annual growth rates. The second change point is
detected in 2016, when the pace of diffusion returned to modest logistic growth. Similar to
EV diffusion, the 2006-2016 period indicates a pull-forward effect.

The market diffusion of HEV mirrors the EV dynamics, only with the growth period being
twice as long. This similarity is not surprising since both technologies are linked in terms of
technology development, policy incentives and infrastructural conditions. Various political
efforts favoring EV also applied to HEV, such as purchase subsidies initiated around 2005
and vehicle emission standards passed in 2009 (Regulation (EC) No 443/2009). Range
extended batteries were also a highly relevant technological breakthrough for HEV.
However, in contrast to EV, the second change point in 2016 which terminated the HEV pull
forward phase, most likely can be traced back to changes in political agendas. Although EV
still receive extensive governmental support, initiatives and support schemes for HEV are
being phased out. Consequently, as illustrated in Figure 3 by comparing the 1% (equal to the
3r) building block functions between EV and HEV, the current pace of HEV diffusion is

considerably slower than for EV.

Around the year 2000 PV gained market visibility and started slow yet with exponential
growth. In 2004 PV diffusion shifted to a strong logistic growth. In 2014 the curve changed
again to less rapid, but still logistic growth. As of now, the pace of technology diffusion is

still fast but levelling off.

The first 2004 change point emerged shortly after the technology entered the energy market
in 2000 (notwithstanding early fringe applications prior 2000). Both, the market entry and the
short initial period of hesitant growth, are likely to trace back to political decisions. At the
beginning of 2000 the Austrian green electricity bill was passed (BGBL. I 149/2002). In 2004,
PV feed-in tariffs, a central part of the green electric bill, were capped and consequently the
pace of diffusion decelerated from an exponential to a logistic function (Biermayer et al.
2019). The subsequent 10 years still featured substantial growth, which presumably rooted in
subsidy initiatives and support schemes by national government and federal states.
However, extrapolating the function of the second building block suggests that market
satiation would have been achieved by ca. 2020. In 2014 the curve shape remained logistic
but the pace decreased; this most recent trajectory of the third building block however
indicates a much higher level of eventual market saturation. The second change point
corresponded with the change in PV subsidy schemes. Since 2012 only installations between
5 and 350 kWp are eligible for feed-in tariffs and investment grants. Installations smaller
than 5 kWp however may apply for other support schemes, such as the subsidy package
issued by the Austrian climate and energy fund in 2014 budgeted with 30 million Euro for
the next 10 years.



HP are the most mature of the four investigated low carbon technologies and entered the
market in the early 1980s. Market entry was characterized by a standard logistic function, but
in 1985 diffusion changed to a 20-year period of linear growth. In 2005, the diffusion curve
changed to rapid exponential growth. In comparison to all other technologies, the market

diffusion of HP deviates most from the baseline s-shape.

Previous studies on heat pump diffusion in Europe (Nyborg and Ropke 2019, Baardsen et al.
2008, Biermayer et al. 2019) discuss underlying developments that may help to understand
the detected change points and curve shapes. The dramatic increase in fuel prices during the
second oil crisis in the 1980s initiated a political debate on energy independency that later
manifested in support schemes for alternative, domestic and renewable energy sources.
Presumably, these policy actions enabled the constant growth in HP after the first change
point. In the beginning of the 2000s more efficient air-to-air heat pumps became publicly
available (Hartl et al. 2018), and stricter energy efficiency regulations in Austrian building
standards favored HP installation. Furthermore the installation of renewable energy systems
in private households was subsidized. This combination of technology development,

building standards and subsidies was likely to trigger exponential growth.

5 Discussion and conclusions

We used mathematical change point analysis to analyze (i) whether the empirically observed
market diffusion of low carbon technologies conforms with Rogers’ (1983) baseline s-shape
pattern and, if the s-shape is not confirmed, (ii) how the pace of technology diffusion
changes after certain turning points in the diffusion curve. This analysis allows to link past
political and technological developments with accelerate and brake effects on market

diffusion.

This mathematical framework is applied to four low carbon technologies in Austria: electric
vehicles (EV), hybrid electric vehicles (HEV), photovoltaics panels (PV), and heat pumps for
space heating (HP). Market diffusion of these technologies does not follow the idealized s-
shape used in various diffusion models. Moreover, none of the studied technologies follows
a continuous, smooth function, hence implying that real-world market diffusion fluctuates
and can be highly volatile. In order to represent these fluctuations mathematically, we use
building blocks of functions to gain the best fit of the estimated models to the observed

market data.

Comparing the alternative models of the four low carbon technologies underscores the high
heterogeneity in the location and timespan between change points as well as in the
combination and parameterization of functions. EV and HEV feature pull-forward effects
from intermittent promotion by policy initiatives; HPs were locked in constant linear growth

for 20 years until accelerated by product innovation and stricter building standards; PV
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show subsequent logistic functions pointing to shifting levels of potential market saturation.
This heterogeneity strongly questions the presumption of uniform, idealized diffusion
processes, such as the s-shape. Yet, this heterogeneity calls for replication of our
mathematical framework in other countries and extension to other technologies, in particular

in course of digitalization (e.g. telecommunication and health services).

The mathematical framework developed in this study looks back on historical market
diffusion and should be used as a forward-looking forecasting tool only with caution,
particularly because unexpected technological or political breakthroughs can evoke a change
point and a functional variation in the model’s most recent building block. In a similar vein,
extending the time series data by additional data points could yield different estimates of
model parameters or may even shift change points or suggest other functions within selected
building blocks. Thus, the change point analysis method crucially depends on reliable time
series spanning 15+ years of observed market development, and model results should be
continuously revisited for robustness checks as additional data points become available. This
applies especially to low carbon technologies which are in the early stage of market
diffusion, where the take-off point from niche product to market mainstream has yet not

been reached.

The main purpose of our framework is to provide an entry point for an in-depth
understanding of the social-technical-economic processes leading to a certain pattern of
market diffusion. Mathematically identifying change points and curve shapes raises the
subsequent (and more interesting in terms of enabling and managing the low carbon
transformation) question which events induced these discontinuities in market uptake. We
propose battery development or subsidy schemes as potential reasons for the identified
discontinuities in the Results section. Heuristics such as the Multiple Streams Approach
(Kingdon 1989) could guide a more systematic historical analysis when parallel
developments in policy, public opinion and technology converged to turning points; these
turning points would appear as change points in our framework, and the dynamics in these
parallel developments would be reflected in the function after the change point. However, it
should be kept in mind that any search for post-hoc explanations holds the risk of hindsight
bias and an over-deterministic worldview and may underrate the effect of random

serendipitous events.
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Appendix

By means of the AICc posterior model, weights (w) in a Bayesian setting are derived. These

probability weights are calculated as follows:

o)
w; = ———5- Eq.Al
Xn exp(—)

The difference between the AICc of a mean function model i (i,j = 1...n) and the AICc of the
model with the minimal AICc is denoted by A;. The weight w; shows the probability that
model i is the best out of the considered number of models (1). Eq.A1 hence ensures that the
sum of all weights equals one (3, w; = 1). Thus, w; can be interpreted similar to p-values in

classical hypotheses testing when more than one hypotheses is tested.

Table A 1 Change point and building block of the selected model for each technology

EV HEV PV HP
Selected Two CP Two CP Discrete CP Discrete CP
model
Parameterization of the building block functions
1 Building Log (-a/b=2017.4, Log(-a/b=2018.8, | Exp (a=-909, Log(-a/b=1981.4,
Block b=0.74,C=34,033, | b= 0.44, C=| b=0.45, b= 0.95, C=13.371,
D =128) 88,977, D=711) D =-183)
D =-27)
2" Building Exp(a = -1236, | Exp(a = -333, | Log (-a/b=2013.1, Lin(a = -2,240,939
Block b=0.62,D = 551) b=0.16, D = -|b=0.9,C=1,287,123, B=1136.4
4250) D = 21,989)
3" Building Log (-a/b=2017 .4, Log(-a/b=2018.8, | Log(-a/b=2017.2, Exp (a=-118,
Block b=0.74,C=34,033, | b= 0.44, C=|b=0.28,C=2,427,863, b=0.064,
D =128) 88,977, D =-85,236) D= -88468)
D =-27)
Year of change points
1 Change | 2011 2006 2004 1985
point
2" Change 2015 2016 2014 2005
point
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